Project Overview

- **Motivation**: reduce driveline/gear vibration
- **Objective**: study magnetostrictive systems in relation to stiffness tuning, vibration damping, and energy harvesting
- **Expected Outcomes**:
 - Better understanding of multifunctionality
 - User-friendly FE module for 3D simulation

Plan

Sub-project 47A:
- Model stiffness switching (0 – 1 kHz)
- Design, build, and test magnetostrictive variable-stiffness components
 - Benchmark against NASA’s variable spring

Sub-project 47B:
- Model 2D/3D electro-magneto-mechanical behavior of harvester/damper

Sub-project 47C:
- Improve material model solution procedure and numerical inversion for
 - Elimination of singularities
 - Faster and more robust convergence
- Integrate system models directly into commercial FE software

Background

- NASA is investigating piezoelectric-based solutions
- Available magnetostriction models are for expert users and have computational issues
- Galfenol and Terfenol-D offer the potential for
 - Improved energy harvesting and damping
 - Robust and reliable stiffness tuning

Plan (cont.)

- Design and build vibration ring and circuitry
- Test prototypes up to 2.8 kHz

Project Leader: Marcelo Dapino (OSU)
IAB Focals: Vivake Asnani (NASA GRC) and Duane Detwiler (Honda R&D)